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CHAPTER 1

INTRODUCTION AND SUMMARY

This final report on AFOSR Grant No. 77-3462f@ is a
technical description of exterior-interior aperture coupling
of a plane electromagnetic wave to a rectangular cavity con-
taining a wire obstacle. Portions of the research have been
described in previous annual and interim reports. In addition,
portions have been presented at meetings of the International
Scientific Radio Union (URSI) and in a paper published in
Radio Science (Johnson, Howard, and Dudley, 1979). All of the
important analysis and results for the entire program are con-
tained in this final report. In addition, we contemplate one
additional journal article based on the final results contained
herein.

The problem of coupling electromagnetic energy into a
cavity through an aperture and excitation of current on a wire
in the interior is one requiring considerable care both in
formulation and numerical reduction. Essentially the procedure
we have used is to begin with Maxwell's equations, produce

vector Helmholtz equations for the electric and magnetic fields,

and invert the ensuing second order vector differential operators

through application of a dyadic Green's theorem. The results

are expressions for the electric and magnetic fields that can

be specialized as integral equations by taking the observation




points to the aperture and to the surface of the interior wire.
The coupled integral equations produced are next solved by the
method of moments, a procedure which transforms the integral
equations into a matrix equation that can be numerically
inverted.

To simplify the technical bookkeeping, we have formu-
lated the problem in dyadic notation. This approach is
particularly useful in displaying the various components in the
Green's functions. One of the significant contributions of this
study has been in the careful construction of the dyads and
their evaluation in regions where they become singular. This
subject is treated in detail in our journal article recently

published in Radio Science, referred to above. We have been

particularly careful concerning the distributional character

of some of the singularities and the completeness of the Green's
dyadic eigenfunction expansions, a fact that has led to some
controversy in the literature. We feel that our contributions
have resolved some confusing statements on the longitudinal

wave functions and we are confident of our results.

The numerical reduction has occupied a major portion of

our time during the last year of the research. We have develop-

ed a summation method for evaluation of otherwise slowly
converging eignefunction series and thereby have been able to
significantly reduce the numerical processing time. We have
discovered a sign discrepancy between our work and that of Seidel

(1978). Our analysis supports the sign obtained in our results.
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In Chapter 2, we discuss the problem geometry and

produce the formulation in the frequency domain. In Chapter 3,
we discuss the scheme for numerical solution with particular
attention to subdividing the matrix to be inverted by the

method of moments. In Chapter 4, we discuss the special tech-
nigques developed to sum the series appearing in the various
elements of the matrix. In Chapter S5, we give sample numerical
results for aperture fields and wire currents. We have included
an appendix describing our analysis of the sign difference
between this work and that of Seidel.

As a footnote, we should like to point out a dissapoint-
ment in one phase of the work. We had hoped to be able to
provide some transient results for the wire current by obtaining
the currents at various positions along the wire over a wide
range of frequencies, multiplying by the spectrum of a suitable
input pulse, and taking the numerical inverse Fourier transform.
Indeed, Figures 21 and 22 are representative of our efforts in
this regard. Unfortunately the resonances are so narrow (in
engineering terms, the Q is extremely high) that we could not
obtain a causal inverse transform. In other words, the resonance
is so localized, it is as if we were attempting to take the
inverse transform of a delta function. We verified our difficul-
ties by creating an RLC circuit model, solving for the current
in the frequency domain, and attempting a numerical inverse trans-
form. All goes well until one selects a value for the resistance

small enough to again produce a very high Q situation. At this

point all codes we have tried for performance of the numerical

B T




inverse start failing. We believe that this problem can be

solved by analytic continuation of the frequency variable w
away from the real axis to avoid the poles of the transfer
function that are located close to the axis. Since attempting

such a procedure requires a major set of changes in our computer

program we have not tried to do this.
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CHAPTER 2

FREQUENCY DOMAIN FORMULATION

The frequency domain version of the boundary value

problem of Figure 1 is now considered by specializing the

lwt plane wave. The

exterior source to that of a time harmonic e
problem formulation of this section will result in a numerically
tractable system of coupled integro-differential equations for

the thin wire currents and tangential aperture electric fields.
Once these wire currents and tangential aperture electric fields
are determined, fields anywhere in the exterior or interior regions
may be computed by use of the appropriate Green's functions.

First potential dyads for cavity interior and exterior
half-space are constructed. Next these dyads are used to obtain
integral representations of the electromagnetic fields in each
region. These integral representations are given in terms of
the unknown tangential aperture electric fields and wire currents.
Continuity of the aperture's tangential electric fields and the
boundary condition that the tangential component of the electric
field is zero along the wire are enforced to yield a system of
coupled integro-differential equations for the unknown aperture
electric fields and wire currents.

The potential Green's dyads for the exterior half-space

and cavity interior are now constructed. The frequency domain

solution of Maxwell's equations driven by electric currents may

by expressed as
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- 1 2 -
E = Toen (k® + VV«)A (2.1a)
= _ VxA
= xA (2.1b)
where
- (v? + k¥))E = T
nxA=0 on a perfect electric 2.1
7 -E=0 conductor (p.e.c.). (2.1c)

In (2.c) n denotes a unit normal vector.
The radiation condition at infinity and Meixner's edge condition

[Meixner 1972] are imposed where appropriate to insure a unique
solution. Similarly the solution of Maxwell's equations driven

by magnetic currents is given by

= _ 1 2 o
H = Tocn (k® + VV-)F (2.2a)
E= - V_}€<£ (2.2b)
where
2 2

on a p.e.c. (2.2c)

Solutions of the above systems (2.1) and (2.2) may be
obtained by use of the corresponding magnetic and electric vector

potential dyads EA and 3} . The magnetic potential dyad satisfies

) G, (T|T') =T &§(r-t') (2.3)

R




where I is the identy dyad. Similarly the electric vector poten-

tial dyad satisfies

-7 + KHFEIT) = T s(F-F) (2.4)

nx (Vx E}(?IF'))= 0) on a p.e.c.

n . EF(?!F') =0 ’

Since these potential dyads are diagonal the exterior
half-space dyads, denoted by the superscript "hs", may be con-
structed by image theory. The results are presented in Table 1.
Since systems (2-3) and (2-4) determine self-adjont boundary
value problems, the interior cavity dyads, denoted by superscript
"c", may be given in terms of their complete eigenfunction
expansions. These expansions are given in Table 2. The corre-
sponding field dyads may be obtained by differenation, however
they are highly singular and should be interpreted as distributions

(Johnson, Howard, and Dudley., 1979).




[ (FIF)-v; (FIE") 0
GA(r|r') = 0 w(rlr')-wi(rlr')
0 0
P — g — — e
w(r|r')+wi(r|r') 0
=NS_ _ _ —_—
gF(rIr') = 0 w(rlr')+¢i(r|r')
| 0 0
where
-ikR
VEIT) = g
L e-ikRi
‘Pi(r|r')= r_'ﬂRi .
2 2 2 "
R= [(x=x")° + (y=y')" + (2-2")7]
and

iy
Ri= [(x-x')2 + (Y"Y')2 + (z+z'-c)2]

iF:rhe problem geometry is given in Figure 1.

*
Table 1. Potential Dyads for The Exterior Half-space

0

0
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Table 2. Potential Dyadic Green's Functions for A Rectangular

. *
Cavity
(ce), (s8) (s8) 0 0 ]
£ _ _ 1 € em €,
GA(r r')= abe - 3 0 (ss)x(cc)y(ss)z 0
’m'n-o K - k
fmn
0 Q (ss)x(ss)y(cc)
2
and
@ (ss) (cc) (cc) 0 o] .
c _ _ 5> € € €n x ¥ oz
QF(r ') = ;'b?z,m,n=0K2 - kz 0 (t:c)x(ss)y(ce)z 0
fmn 0 0 (cc)_(ec)_(ss)
x b4 -z-J

where (cc)x(ss)y(ss)z = cos (kxx) cos (kxx') sin(kyy)sin (kyy')in (kzz)sin (kzz'),etc.

mm nm n 2 2 2 2 2
kx-a'ky )::'kz.c:'Kllmmﬂkx"ky*'kz-k
and
1, ifi=20

€1 T 12, ifi 40

» A ~ A
The cavity dimensions are a,b, and ¢ in the x, y, and z

directions respectively.
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Now that the appropriate Green's dyads have been con-
structed, they will be used to obtain integral representations
of the electromagnetic fields in each region. The equivalence
principle [Harrington 1961, p. 106] is used to obtain an
equivalent problem for the exterior half-space as illustrated
in Figure 2. 1In the equivalent problem the aperture has been
shorted and the magnetic surface current ﬁs has been placed on
the surface where the aperture was previously located. The
magnetic surface current is chosen to make the electric field
jump to its origional value just above the aperture surface.
The equivalent problem for the interior region is obtained
similarly and is illustrated in Figure 3.

It is convenient to separate the electromagnetic field
in the exterior half-space into two terms. The short circuit
fields, denoted by the superscript "sc", are those fields that
would exist if the aperture were not present. These fields may
easily be found by geometric optics. The fields due to the
presence of the aperture or equivalently scattered by the mag-
netic surface current may be computed by use of the electric
potential dyad EFhs of Table 1 and (2.2). In particular the

magnetic field in the exterior half-space is given by

(7 =< 1 2 _hS_ Tty M (P 1
H(r) = H(TY) + -iw—u(k +VVe) gF(rIr ) M_(T') ds (2.5)
a

where A is the aperture surface. The first term on the right

of (2.5) is the short circuit magnetic field, the second is the

Bt S A g vy

e ey Ty, e
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magnetic field due to the presence of the aperture. The electric
field for the exterior half-space may be found similarly by use
of (2.2b) and (2.2c).

The fields in the cavity interior (Figure 3) are the sum
of fields due to magnetic surface current plus the fields scattered
by the wire. These fields may be obtained by use of the cavity
potential dyads (Table 2) and (2.1) through (2.4). The magnetic

field in the cavity interior is given by
——_ =1 2 =S _ _ =C = —
H(T)= fop(k“+VV) gF(rlr')Ms(E')ds' + 7 x GA(rIr')J(r')ds'. (2.6)

The electric field in the cavity interior may be found in a
similar manner.

Note that by construction the equivalent problems (Figures
2 and 3) satisfy continuity of the electric field across the
aperture. Before enforcing continuity of the aperture's tangential
magnetic field, it is recalled that under the thin wire assumptions
of Section 1 all current is directed along the wire axis. Thus
continuity of the apertures tangential magnetic field plus (2.5)

and (2.6) yield

i - 2 hs,YY CYY _ _
2iun HSCE) = (k4 %2-)”[93.(15}&') + g (FIT)IE (F')ds!
A
(2.7a)
- a2 hs, xx C, XX_ _
ETEr [gF (rlr') + gF(rlr')]EY(r')ds'

A




R

and

inc 2 32 hs, xx C,XX_ _
-2iwp H (r) =(k"+ —7) [gF(rlr ) + gF(rIr )] Ey(r )ds

a (2.7b)

[ C ! by | [ d C,X¥_. pg } ds'
J[gF(r r ") +go (T]T')1E (F')ds ' +iwugs | |G, (TIT )Jy(r )ds'.
W

The tangential component of the electric field along the wire is

set to zero. This gives

2 22 g - 3 CrXX_ -
A {

W

Equation set (2.7) is a coupled system of integro-differential

equations for the unknown aperture fields and wire currents. ;

In the next section an efficient numerical solution scheme for

this system will be presented.




CHAPTER 3

FREQUENCY DOMAIN SOLUTION SCHEME

A numerical solution scheme for the linear system of
coupled integro-differential equations (2.7) derived in the

previous section is now presented. The method of moments

[Harrington 1968] with pulse expansions and point matching is
used. As illustrated in Figures 4 and 5, the unknown,
tangential, aperture electric field components are approximated
by piecewise constant rectangular patches. The x component of

the electric field is expressed as

_ NE, _
“ Ex(r') = e P .(r") (3.8a)

£, xoxd

where - th
1, if r' is in the i~ rectangle of Fig. 4 j

Pxi(;’)=

. » 30t

0 , otherwise ’

e, ; are unknown constant coefficients, and NEx is the number of
of nonzero Ex pulses. Similarly
NE

Ty = b4 . (T . 1
B, (F) = 2 ey By () (3.8b)

where

_ 1, if ' is in the jth rectangle of Figure 5
P i(r') =
Y 0, otherwise ’

eyi are unknown coefficients, and NEy is the number of nonzero

Ey pulses.

16
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Note that the Ex and Ey aperture pulse expansions

(Figures 4 and 5) are offset. Centers of the Ex pulses corre-
spond to corners of Ey pulses and vice versa. This will later
allow efficient evaluation of the x and y derivatives in (2.7a)
and (2.7b) by finite difference techniques. Wilton and Glission
[1976] applied this technique, offsetting the expansion functions,
to the problem of scattering from a rectangular plate.

Since JY is assumed uniform about the wire circumference

it is helpful to define the current I by

I(y') =2rr_J (y'") (3.9)

where r, is the wire radius. Under the thin wire approximation
all current is assumed to run along the wire's center [Seidel 1977,

1978]. This current is now approximated by (Figure 6)

NW
I(y') =3I, P.(y") (3.10)
i=1
where

l, if y' belongs to the ith interval

p_.(y') =
Wi 0, otherwise

Ii are the unknown current coefficients, and NW is the number
of nonzero wire current pulses.

Enforcement of (3.7a) at the nonzero E, aperture pulse
centers, (3.7b) at the nonzero Ey aperture pulse centers, and
(3.7c) at the wire surface points (xc + LY zc), where x _ and

(o

z, are the respective x and z corrdinates of the wire center and
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ym(m = 1, NW) are the nonzero wire current pulse center points,

vields the NEx + NE

The

11
mi

12
mi

21
mi

mi

23
mi

22 _

W

v + NW square matrix equation

ju— L - e
11 ) 12 | 1
Tmi : Tmi ' 0 exiw fm 1
21 22 V23 _ 2
Tmi ' Tmi ( 'I‘mi eyi = fm . (3.11)
- '—- — - ——— - - - - - - -
.32 1 .33
0 T T3 I. 0
| ) mi ) mi L.J._. L .l
T submatrices are given by
2 hs,yy_ C/YY _ _
= (k2+iLQ)J[IgF(rm¥r')+ gF(rmIr')]Pxi(r')dx'dy'(m=l,NEx;
dy A
i=1, NEx) (3.12a)
a2 hs,xx_ C,XX _ -
—-— ] 1 L} [} L} -
= 3%y [gF(rmlr )+9F(rm|r )]Pyi(r )ydx'dy' (m=1,
A s =
2 hs,y c,YY
) = el et | - ) =
= 3;3; J[[gp(rmTr )+gF(rm|r )]Pxi(r')dx dy' (m=1,
A . im
NEY' i l,NEx) (3.12¢c)
2 32 hs, xx_ C,XX _ _
' ' ' ' U =
= (k“+—) (gF(rmlr )+qF(rm|r )Pyi(r )dx'ds' (m=1,
A
NEy;i=l,NEy) (3.124)
) ; c,YY
i = = .
= 1%% 7EFIIGA (rmlr')Pwi(y')dy'd¢' (m=1,NEY;1=1,NW) (3.12e)
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C, XX
32 — 3 poyg - o | 1 - e i=
Tmi = 3z JJgF(rmlr') Pyi(r )dx'dy (m=1, NW; i l,NEY) (3.12f)
A
2 c,Y
33 - 1 2 ) L - ] ' = 3=
Tmi = IEE??(k + ;;7)[[G(rmTr')Pwi(y')dy d¢' (m=1,NW;i=1,NW) (3.1l2q)
7}
The forcing function's components are
1 inc _
fm = 2iwu Hy (rm) (m=1,NEx) (3.13a)
and
2 . inc _
fm = =2iwy Hx (rm) (m=1,NEy). (3.13b)

Once the T matrix elements are obtained the unknown aperture
A‘ field and wire current coefficients may be calculated by
Gaussian elimination.
}} Evaluation of the T matrix elements (3.12a - 3.124) is
now considered. To avoid kernels that become highly singluar
as ?ﬁ approaches r', the derivatives are kept outside the integral
signs and are evaluated by finite differences. The appropriate
finite difference grids are illustrated in Figures 4 and 5. Thus, the
problem of evaluating (3.12a - 3.12d) reduces to that of com- !
? puting the xx and §§ components of the electric vector potential %
dyads integrated over the aperture pulses (' coordinates) and i
matched at the appropriate pulse centers. The major obstacle to |
these computations is that the cavity dyads (Table 2) converge
more and more slowly as the distance between ?ﬁ and r' becomes

small. Summation techniques for these dyads are presented in the




next section. The half-space potential terms are evaluated by
analytical integration of the singular terms, then Gaussian
quadrature [Abramowitz and Stegun 1964, P. 887) is used to
integrate the remaining terms.

Since the source and observation points in (3.12e) and
(3.12f) remain distant the z derivatives may be brought under
the integral signs. The remaining kernels consist of exponen-
tially convergent infinite series which may be integrated term
by term.

The derivatives on the wire potential terms (3.12g) are
kept outside the integral and evaluated by finite differences
(Figure 6). The major obstacle to evaluation of this term is

the summation of a cavity potential dyad as the distance between

source and observation points becomes small. Techniques for

carrying out this summation are presented in the next section.

{
3
i
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CHAPTER 4

I EVALUATION OF CAVITY POTENTIAL TERMS

The final obstacle to the solution of our frequency
domain problem is the matrix fill of elements involving the
cavity vector potentials Eg, and EK . In Table 2 these dyads
are given in terms of their threefold infinite eigenfunction
expansions. For source and observation points distant it will
be seen that these expansions reduce to rapidly exponentially

convergent double series. However, as source and observation

points become close, these series become slowly convergent.
‘ This chapter develops an efficient means of evaluating the
potential dyad Eg(FIF') for aperture source and observation ]
points close, under the restriction that ka (Figure 1) is less
than 7. The same technique will be used to evaluate Eg(F'IF)in
(3.12g) under the thin-wire restriction.

» . 3 [3 AN
Consideration is now given to the xx component of the

dyad gg'xx. Similar techniques hold for gc,yy. From Table 2 t
with z = 2' = ¢ (Figure 1) l
€£,€ €
CrXX ==y, - _1 L' mn . . . \
9 (rir*) IEs 250  — sin (k x)sin (k x )cos(kyy)cos(kyy )
m=1 Lmn (4.1a)
n=0
= S(|x-x'],|y-y']) + S(|x=x"], y+y') - S(x+x', y+y")

- S(x+x', |y=y'|]} (4.1b)




where
Elemen
S{X,Y) = iabc Zo -7———;7 cos(k_X) cos(k. YY) .
= K -
m=1 imn
n=0

Since the terms of (4.1b) depend only on sums and
differences of the respective source and observation points'
components, the number of calculations in evaluating (3.12b)
and (3.12d) is less than if (4.la) were applied directly.

For source and observation points distant the threefold
infinite series of (4.1lc) may be reduced to a double sum that
yields itself to rapid' evaluation by digital computer. Equation

(4.1lc) is closed in Y [Gradshteyn and Ryzhik 1965] which yields

1 ©® € cosh[/ﬁi + 5; - k2 (b-Y) ]

s(X,Y)

cos (k_X)
2ac 4.9 A2+ kg -~ k2 sinh[vkZ + klzr - k2 b] X

m=1 (4.2a)
with ka (Figure 1) less than 7. The series in (4.2a) is exponen-
tially converging and readily evaluated provided that Y is not
too small with respect to the aperture dimensions and not too

close to 2b. Likewise if (4.1lc) is closed in X one obtains

. ® 1 o elencos(ng)
S(X,¥) = 755 zzo €eén T(X) coslk,Y) = 3pc 9,20 k2 + k2 - k4
n=0 n=0 Y z

(4.2b)




T

2 2

cosh[Jﬁi + k° - k% (a-X)]

Z

, if k2 + k2 -x% >0
' z

2z 2 .2 i e = k%
/Ey + kz k s;nh[/ky +k, - k% a]
T(X) =
K4
—cos[/ﬁE - k2 - k2 (a=X)] . 2 2 2
Y z , 1f ky + kz - k" <0

\ ~w 9 v
v A2 - k§ ki sin(vk? - k§ - ki a)

Similar techniques may be used to close the second term of (4.2b).
The result is a single finite series with know asympotic form
[Abramowitz and Stegun 1970, p. 1005]. This this series may
readily be evaluated. First termwise subtraction of the corre-
sponding asymptotic term from the original series term yields a
rapidly converging new series. Next the otherwise slowly
converging asymptotic series is added to the modified series by
its known analytical form. The first term of (4.2b) is exponen-
tially convergent provided X is not too small or too close to 2a.

In the aperture geometries considered (Figure 1), the only case

where neither (4.2a) or (4.2b) yields itself readily to numerical
evaluaticn is for both X and Y small compared to the cavity
dimensions. Otherwise, Seidel [1977] has obtained an efficient
method for numerical evaluation of these sums.

The remainder of this chapter is concerned with evaluation
of (4.1c) near the source, that for X = |x-x'| and ¥ = |y-y']| J

small. Equation (4.lc) is closed in 2z, making use of Spiegel

(1964, p. 189] and Gradshteyn and Ryzhik [1965, p. 40]). This yields




- 1 2 2 _ .2
S(X,¥) = 3= 3} e Tk, + ky = k) cos(k,X) cos(k/¥)

DA L A

m=1
n=0
where
2 2 2 coth(c/ii + k2 - k2 2 2 2
T(kS + kS - k) = b4 , if kS + k% -k >0
4 2, 2 p2 x Y
/ﬁ + k& -k
X Yy
2 2 2
-cot(c/{ - ki =k
¥, if k2 +kl-x% <.
2 2 2
VO
This series in (4.3) has an asymptotic form
1 bl En
Spsy (X/Y) = 53§ z; cos (k. X) cos(k.¥) .  (4.4) B
m=l A2 k2 - k2 3
n=0 X y |

The difference series whose terms consists of the original series

terms (4.3) minus the corresponding asymptotic series terms is
readily evaluated by digital computer. Thus (4.3) may be evalu-~

ated if a method of evaluating the otherwise slowly converging

asymptotic series may be found. %

To evaluate SASY(X'Y) (4.4) consider the single series

had €
s _(Y) = e cos (k. Y) (4.5)
° ggéj;% + u5 Y

2 which is

where Y is greater than zero and u2 equals ki -k
greater than zero under the restriction that ka is less than 7.

An alternate expression for so(y) will be obtained from Poisson's

formula (Papoulis 1962]




- 1l e 2nT
L D =3 ¥ R (4.6a)

== 00

where f£(t) is continuous and its Fourier transform F(w) is

given by

F(w) = J £(t)e T0t g¢. (4.6b)

-y

Equation (4.5) is rewritten as

% cos(n%})

SO(Y) =y Z;@ > > (4.7)
n /(n-nY)- + v
where v equals Yu. In (4.6a) f(t) is identified as —295151—. Its
JeZ + v2
Fourier transform is given by
-iwt
F(w) = e___cos(t) g4 (4.8a)
~ /tz + vi
= I cos| (l+w) t] at  + [ cos{(w-1)t] at (4.8b)
o t2+v2 o Yte + v j

xo(|1 + w|v) + K (Jw = 1]v) (4.8c)

e e T % s s e - —— -
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Equation (4.8b) follows from (4.8a) plus symmetry considerations.
The integrals of (4.8b) result in the modified Bessel functions
of (4.8c) [Morse and Feshbach 1953, p. 1323]). Application of

(4.6a) to (4.7) yields

3|0’

S, (Y) Z[K(|Y+2nb|~’£ -k)+K(|2nb-Y| -kz)]

n=s=—w=

(4.9%a)

—K (vﬂ - x2y) + 32 Z [K_([2nb + Y] - x?)

+ K ([2nb - Y] /{i - x9)7. (4.9b)

Applications of (4.9b) to (4.4) yields

‘_ 1 « 42—"2
Sasy(X/Y) = = 2 K (k. - k© ¥) cos(kX)

m=1 |
aT m=1 n=1 ° ]
+ Ko([an - Y]VQ}Z( - kz)] COS(kxX) . (4.10)

The second term on the right of (4.10) is very rapidly convergent
due to the exponential behavior of Ko's asymptotic expansion
[Arfken 1971, p. 517]. The first term on the right (4.10) is
exponentially convergent for Y > 0. However, as Y becomes smaller

the series converges more and more slowly. A summation formula

for the first term is given Lewin [1951, p. 83]. Thus
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Y (kY)
1 42 _ k2 v _ ‘o
-a? ZKO( % k Y) COS(kXX) = —45-—
m=1
+.j; cos[k/x2 + Y2] (4
2T *

¢X2 + Y2

1)

1 & cos{k/A? + (2na + X)) cos[k/¥° + (2na - X

)2y

+ +

2r

n=1 /&2 + (2na + X)2 /@2 + (2na - X)Zﬁi

Note that the dominant singularity in (4.11) is the same as that

of the half space dyadic ;F of Table 1. Unfortunately the

infinite series (4.1l1l) 1is slowly convergent. However if one
approximates each term of this series by a finite Taylor seri
in X and Y about the origin, the summation over n may be obta
by analytical methods. For example, the first term obtained i

the Taylor series is given by

-]
3 cosiZkan) _ _ 4n2 sin (ka)] (4.
na
n=1
(Abramowitz and Stegun 1970, p. 1005]. Similar formulas may

used to evaluate the higher order terms in the Taylor series
approximation.

Although the above discussion has bean restricted to the

» XX

evaluation of g; only minor changes are needed to evaluate

g;,yy. Also the terms that must be evaluated (3.12) are inte
of the %2 and 9¢ components of 3; . The sums of (4.2) may be

evaluated by term integration [Titchmarsh 1939, pp. 36-45].

es
ined

n

12)

be

grals

The

exponentially convergent terms (4.10) are also evaluated termwise.
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The only remaining question is the accuracy of the previously

discussed Taylor series approximation (4.11). A sixth order
Taylor series was used for numerical testing and yielded no
relative error worse than 1-10.6 in these terms when max(X,Y)/
a < .05. This procedure allows rapid evaluation of the series
on the right of (4.11), provided that both X and Y are small
with respect to the cavity dimensions in the aperture plane. 1;
Otherwise, this series would not readily yield itself to numerical
evaluation on a digital computer.

The above summation techniques are now used to evaluate

the G;,yy potential terms of (3.12g). Under the thin wire

B " 4

approximation all current is assumed to reside along the wire »l
center. Following Lewin [1975, p. 1211 the wire radius is set

to zero in all terms except where needed to prevent a divergent

series.
To reduce the number of computations necessary to

evaluate all of the G;,yy terms, this potential is expressed as

Ga Y (T IT) =s(ly + y'D) + s(ly-y']) (4.13)
where
0 €, _¢€ | 3
S(Y) = mn L(85)_ cos(k Y)  (4.14) i
2=1 Ky . -k Y §
n=1 mn £

n=Q
and the notation is explained in Table 2. This series may be

closed in Y to yield

1 L (ss) (ss) cosh[«i - k" (b-1)]
s(Y) = 3abo 2 © (4.15)
;:i ir+ k 2 51nh[/£i + k2 iéib]
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This series is rapidly exponentially convergent provided that

Y is not too small or does not approach 2k. Since

S(Y) = S(2b-Y) (4.16)

all that remains to be considered is y small with respect to

the cavity dimensions.
A scheme for numerical evaluation of S(Y) with y small

3 . — = -'= .
is now given. Recall that L. (xc+rw,ym,zc) and r (xc,y ,zc)

where X, and z, are the respective x and z coordinates of the
wire center. By means of a trig identity S(Y) (4.14) may be

expressed as

; s(y) = TZ(Y) - Tl(Y) (4.17) f
where é
3 .
1 o cos[kx(2xc+rw)]c05(}§YY)(SS)z
T, ¥ = 3ps Z_: €fnfn T3 , (4.18)
1=1 Kz -k
m=1 mn
n=o
and
_ 1 il elemen cos(kx rw) cos(kyY) (ss)z . (4.19
T,(Y) = Epe & ) 3
2=1 Kyon = K '
m=1
] n=o0

Equation (4.18) may be closed in x to yield a rapid exponentially
converging series. The wire radius in (4.18) is set to zero.

Next (4.19) is closed in z to yield




T, (¥) = 12k ~  _‘nn cos (k ¥) sinh Wk +k_-k® (C-2).
abc
n=0 /kx + ky -k Slnh[/kx + ky - k= C] (4.20)

This series has the asymptotic from SASY/Z‘ (4.4). Thus the

procedure for evaluation of this term has already been given.




CHAPTER 5

SAMPLE NUMERICAL RESULTS

The numerical solution scheme of the previous sections
was implemented by means of a fortran program on a Cyber 175

In all examples (Figures 7,10,14) the wire radius was

computer.

set at one millimeter, the number of aperture pulses in the

x-direction was 4, the number of aperture pulses in the

y-direction was 5, and the number of wire current pulses was 12;

1
a zero half pulse counts as one half. g
In the first example (Figure 7) a normally incident |

plane wave, with free-space wavelength equal to 10 meters, im-

pinges on a cavity backed aperture. The incident electric
field is y directed to give maximum coupling to the interior
wire. The cavity dimensions are a = 1.4 meters, b = 4.5 meters,
and ¢ = 2.4 meters in the x, y, and z dimensions respectively.
The square .02m x .02m aperture is centered with midpoint

2 EA = (.7,2.25,1.2). The centered thin wire runs from (.7,.5,1.2)

to (.7, 4.,1.2). Figures 8 and 9 show some cuts of the aperture

electric field. As expected for electrically small apertures
the aperture electric field is essentially imaginary. The
real part is seven orders of magnitude lower than the imaginary

part. The y component of the aperture electric field has even

symmetry about both axes of the aperture, while the x component

is odd. Figures 10 and 1l show a comparison between Seidel's

34
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Figure 10 Wire Currents for Problem Geometry l.
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Figure 11 Imaginary Wire Currents for Problems Geometry 1.




dipole moment solution [Seidel 1977, 1978] (dotted line) and

the integral equation approach (solid line). Seidel's solution
treated the aperture coupling by the use of dipole moments for
1 elliptical apertures, in this casecircular with radius .01 m and
located inside the square aperture. Unfortunately a sign
discrepancy occurs in the imaginary part of the current (Figure
! 11). Note that while the symmetry of the integral
| equation method is preserved the dipole moment has lost its
symmetry. At first one might suspect that the imaginary part
of the current (Figure 1l1l) is in the noise, however after
running various test cases this sign discrepancy consistently
occurred. A painstaking search of our computer program yielded
no error. 2n attempt to resolve this discrepancy is given in

Appendix A.

In the next example (Figure 12) an incident plane {
wave travels in the y direction, is polarized with a z directed

incident field, and has free-space wavelength equal to one

meter (1m) . The cavity dimensions are .25m, .3m, and .2m in the
X, Y, and z directions respectively. The wire is oriented

lf parallel to the y axis and runs from (.125,.05,.1) to (.1l25,
.25,.1). The square aperture (.02m x .02m) is centered with
midpoint r_ = (.125,.15,.2). Figures 13 and 14 show cuts of
the aperture electric fields. the symmetry of the aperture
electric fields is described in Table 3. Figure 15 gives a

comparison between the wire currents computed by Seidel's
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Table 3 Aperture Electric Field's Symmetry for Geometry 2.
Component Real or Imaginary Aperture x-axis Aperture y-axis
X real odd even
X imaginary odd odd
Y real even odd
Y imaginary even even




-5.. —

Dipole Moments

In'l'eg ral Equa'ﬂon

—Y

05 15

Figure 15.

Wire Currents for Problem Geometry 2.

25




46

dipole moment approach and the technique presented in this

paper. The dipole moment solution is for a circular aperture
of radius .0lm and with centerpoint f; = (.125,.15,.2).

Again the sign discrepancy persists.

1 Figure 16 has the same geometry as Figure 7 except the
centered aperture is made rectangular (.8m x .3m). A study of
wire current versus frequency is made in Figures 17 - 21.
Figures 7, 8, 9, and 20 show the variation in current for

4 8

frequencies of 104. 4.10 10° hertzs respectively. Note the t

change in sign of the wire current as the frequency crosses ?

the first wire resonance of 4.16 - lO7

hertzs. This resonant
frequency is slightly lower than that for a wire in free space.

Figures 21 and 22 show the variation of the current at the

wire center with frequency. ©Note that the real part of the
current (Figure 21) is proportional to the frequency sguared

i? in the quasi-static portion of the frequency spectrum. Also

% the imaginary part of the current (Figure 22) is proportional

i to the fifth power of the frequency in the quasi~static region.
The amount of computation time for each frequency point is

20 seconds c.p.u. time on the Cyber 175 computer.
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Figure 18. Wire Currents for Geometry 3.
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Figure 19. Wire Currents for Geometry 3.
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APPENDIX A

ON THE SIGN DISCREPANCY

In this appendix analytical techniques are combined
with numerical results in an attempt to resolve the sign
discrepancy of Chapter 5. 1In particular the problem
geometry of Figure 7 will be considered. First check on
the signs of the aperture electric fields will be made by
comparison with currents induced when a normally incident
plane wave strikes a thin perfectly conducting rectangular
plate. If one neglects the contributions to the aperture
fields due to scattering from the wire and cavity walls
these problems are Babinet equivalents.

The currents induced on the plate (Figure 23)

satisfy
. -ikR
—, ~ikR - "t
inc 2 ([ 3 (et 2 ([ (x)e
- - 2 X 'la J dx'dy‘
iwe E, (D)=(k +;;7) J TR dx'dy'+yeay| | 4R
J J
P P (A.1)
inc 2 32 (3. (F')e” LXR 52 er(F')e-lkR
-] )= D AN ' '4 ' U
iwe Ey (r)=(k +;;7) R dx'dy %3y R dx'dy
B o (A.2)
where r is located on the plate surface P, and R = |r-r']|.

For a normally incident Hy polarized plane wave (Figure 23)

(A.1l) and (A.2) may be expressed as

, . -ikR
inc_ _ ~ikR 2 H (T)e
-3Hy (r) 2 J_(r')e ' ) X 1 '
2,9 X dx'dy' + —s—| === dx'dy
2 =(k +;;2-){J————-4"R 3x3yJJ 4TR
P (A.3)
54
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Figure 23

Scattering from a square plate.




2 (12,9 rqut -3 B4 tay'
0 =(k +——7)[[_XE?§— dx'dy axayfj TR dx'dy (A.4)

If one neglects the contribution of the aperture
fileds due to the wire and side and back cavity walls and
specializes the incident field to an Ey polarized normally

incident field (2.7a) and (2.7b) become

2 32 [[E (F") -ikR 52 zy(f')e'lkR
- - ] ! ] ]
0 =(k +;;§ SR © dx'dy 3y9% 5TR dx'dy (A.5)
A A
inc .
-3E_ (X) 2 52 EY(E‘)e'lkR 32 EX(E')e-ikR
- 4 1 ' o 1 1]
Y =(k raxz) TR dx'dy %3y 5TR dx'dy’'.
A A (A.6)
JP
i ifi c_ i P = - =X c = P = P
If one identifies Ey = 2Hy ) and Ex Eﬁ Jy where
2
the superscripts "C" and "P" denote cavity and plate respec-
tively, one sees that for identical forcing functions H;nc =1

inc _ c 1l .P
and EY = 1, the aperture Ey should be -~ > Jx .

Figure 24 shows a plate scattering problem for a .15\

inc
square plate with Hy = ~1. When comparing with Figures (8
and 9) with E;nc = 1 we should have Eg to have the same sign

as Ji, as is indeed the case. Note that the signs of the
aperture fields and wire currents should not change in the
quasi-static frequency regime. The sign discrepany of Chapter 5
is in the imaginary part of the wire current. Since the

Greens functions of (2.7c) are real the imaginary component of

the wire current is driven by the real part of the aperture

A e s R
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Figure 24 Current induced on a (.15) x .15)) square plate
for a normally incident excitation with

#I% = _1 on the plate. (a) R (3,), (B) I_(3,),
(;) RE(JY)' {d) Im(Jy)-
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field Ey. The question arises as to whether the presence of

the cavity and or wire changes the sign of the real part of
the aperture field Ey' The results of our computations indi-
cate that this is not the case, as illustrated in Figures
(25-28).

The imaginary component decreases by approximately

factor of 2 as the Green's functions kermel in (A.5) and (A.6)

changes from

(cos(kR)

1 sin (kR)
VT R ) (A.7)

for the halfpace to approximately

e+ ey

1 (coskR _; sin(kR) (A.7)

T R 1 73R

for the interior cavity, exterior halfspace problem. It is
comforting to note that decreasing the imaginary part of the
kernel also reduced the real part of E&, since an entirely
real kernel in (A.5) and (A.6) would produce a zero real

component of both Ev and Ex'

An argument is now given to determine the sign of the
imaginary wire current (Figure 11). Note that (2.7C) may be

expressed as

Jy(r) = iwe @(Ey) (A.7)

g em——

where 0 is a real linear operator. Note that the real and

imaginary parts of E_, have approximately the same shape. Also

Y
note that the imaginary part of E

vy’ E; produces an negative

real current (Figure 10). Thus G(E;) is positive. Since the
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real part of EY(E;) has approximately the same shape it follows

that e(E;) is again positive, so that the imaginary part of

Jy (Figure 11) should be positive.
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